Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(13): 7010-7020, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38529524

ABSTRACT

Cyetpyrafen is a recently developed acaricide. The citrus red mite, Panonychus citri (McGregor), has developed significant resistance to cyetpyrafen. However, the molecular mechanism underlying the cyetpyrafen resistance in P. citri remains unclear. Glutathione S-transferases (GSTs) play a critical role in arthropod pesticide resistance. This study showed that GSTs were potentially related to the resistance of P. citri to cyetpyrafen through synergistic experiments and enzyme activity analysis. An omega-family GST gene, PcGSTO1, was significantly up-regulated in the egg, nymph, and adult stages of the cyetpyrafen-resistant strain. Additionally, silencing of PcGSTO1 significantly increased the mortality of P. citri to cyetpyrafen and recombinant PcGSTO1 demonstrated the ability to metabolize cyetpyrafen. Our results indicated that the overexpression of PcGSTO1 is associated with cyetpyrafen resistance in P. citri, and they also provided valuable information for managing resistance in P. citri.


Subject(s)
Acaricides , Tetranychidae , Animals , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Tetranychidae/genetics , Tetranychidae/metabolism , Acaricides/pharmacology , Acaricides/metabolism
2.
Pest Manag Sci ; 77(11): 5032-5048, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34223705

ABSTRACT

BACKGROUND: Amitraz is a broad-spectrum insecticide/acaricide for the control of aphids, psyllids, ticks and mites. Current evidence suggests that ticks and phytophagous mites have developed strong resistance to amitraz. Previous studies have shown that multiple mechanisms are associated with amitraz resistance in ticks, but very few reports have involved Panonychus citri. We therefore used whole genome sequencing and bulked segregant analysis (BSA) to identify the mechanism underlying P. citri's resistance to amitraz. RESULTS: High-quality assembly of the whole P. citri genome was completed, resulting in a genome of approximately 83.97 Mb and a contig N50 of approximately 1.81 Mb. Gene structure predictions revealed 11 577 genes, of which 10 940 genes were annotated. Trait-associated regions in the genome were mapped with bulked segregant analysis and 38 candidate SNPs were obtained, of which T752C had the strongest correlation with the resistant trait, located at the 5' untranslated region (UTR) of the ß-2R adrenergic-like octopamine receptor gene. The mutation resulted in the formation of a short hairpin loop structure in mRNA and gene expression was down-regulated by more than 50% in the amitraz-resistant strain. Validation of the T752C mutation in field populations of P. citri found that the correlation between the resistance ratio and the base mutation was 94.40%. CONCLUSION: Our results suggest that this 5' UTR mutation of the ß-2R octopamine receptor gene, confers amitraz resistance in P. citri. This discovery provides a new explanation for the mechanism of pest resistance: base mutations in the 5' untranslated region of target gene may regulate the susceptibility of pests to pesticides.


Subject(s)
Acaricides , Mites , Toluidines , Animals , Mites/genetics , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...